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Abstract

Say that β : P1(C) → P1(C) is a Dynamical Bely̆ı map. Given any Toroidal Bely̆ı map
γ : E(C) → P1(C), the composition β ◦ γ : E(C) → P1(C) → P1(C) is also a Toroidal
Bely̆ı map. There is a group Mon(β), the monodromy group, which contains information
about the symmetries of a Bely̆ı ı map β. It is well-known that, for any Toroidal Bely̆ı ı map
γ, (i) there is always a surjective group homomorphism Mon(β ◦ γ)� Mon(β), and (ii) the
monodromy group Mon(β ◦ γ) is contained in the Mon(γ) oMon(β).

In this project, we study how the three groups Mon(β), Mon(β ◦ γ), and Mon(γ) oMon(β)
compare as we vary over Dynamical Bely̆ı maps β. This is work done as part of the Pomona
Research in Mathematics Experience (NSA H98230-21-1-0015).

1 Background

1.1 Elliptic Curves

An elliptic curve E is the set of all points (x, y) satisfying a nonsingular equation of the
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for complex a1, a2, a3, a4, a6.
Every elliptic curve E has an abelian group structure isomorphic to that of C/Λ where

Λ = {mω1 + nω2 : m,n ∈ Z}

for R-linearly independent ω1, ω2 ∈ C. Geometrically, every elliptic curve E is a torus T 2(R).
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1.2 Toroidal Bely̆ı Maps

Let X be some Riemann surface. A Bely̆ı map γ : X → P1(C) can be defined as a mapping of
a Riemann surface to a Riemann sphere with at most three branch points, which we take to be
{0, 1,∞}. A Bely̆ı pair (X, γ), is composed of the Riemann surface and its corresponding
Bely̆ı map. If we fix E to be an elliptic curve as defined above, we can define the map
γ : E(C) → P1(C). Such a map from an elliptic curve to a Riemann sphere is known as a
Toroidal Bely̆ı map. As such, (E, γ) is known as a toroidal Bely̆ı pair. Given a projective
point ω = ω1/ω0 ∈ P1(C) = C∪{∞}, we can consider the inverse image of such a Bely̆ı map:

γ−1(ω) =

{[
x
y

]
∈ C2 | (y2 + a1xy + a3y)− (x3 + a2x

2 + a4x+ a6) = 0
ω0p(x, y)− ω1q(x, y) = 0

}
The degree of a Bely̆ı map is deg γ = |γ−1(ω)| whenever ω is not a critical value.

1.3 Dessin d’Enfants

Given a Bely̆ı pair (E, γ) we define the sets B = γ−1({0}) and W = γ−1({1}). We refer
to B as the set of black vertices and W as the set of white vertices. The bipartite graph
embedded in E with vertices B, W and edges γ−1([0, 1]) is called a Dessin d’Enfant.
The degree of a Bely̆ı map γ is equal to the number of edges in its dessin d’enfant.
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1.4 Monodromy Groups

Consider the multiset:

D = {{eP | P ∈ B} , {eP | P ∈ W} , {eP | P ∈ F}}

of three partitions of N for some indexing sets B,W , and F such that N = |B|+ |W |+ |F |.
Then D is the degree sequence for some toroidal Belyi pair (E, γ) with deg γ = N if and only
if there exist permutations σ0, σ1, σ∞ ∈ SN such that we have the following three properties:

• Each of the permutations in D is a product of disjoint cycles with corresponding cycle
types.

• G is a transitive subgroup of SN

• σ0 ◦ σ1 ◦ σ∞ = 1

A group of the form G = 〈σ0, σ1, σ∞〉 that satisfies these properties is said to be a mon-
odromy group. For example, consider the degree sequence D = {{1, 4}, {1, 4}, {5}} for
N = 5. Some possible monodromy groups include the following:

σ0 = (2)(1354) σ0 = (3)(1254)
σ1 = (4)(1352) σ1 = (5)(1243)
σ∞ = (12345) σ∞ = (12345)
⇒ G ' S5 ⇒ G ' F20 ' Z5 o Z4

This illustrates the fact that the degree sequence for a particular monodromy group is not
necessarily unique. In particular, there are at least two Bely̆ı pairs (S, β) associated with
this degree sequence.
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1.5 Wreath Products

Given any two groups N,H and a group homomorphism ϕ : H → Aut(N) we can construct
the semidirect product N oH as follows:

• The underlying set is the product N ×H.

• The binary operation ? is defined as

(n1, h1) ? (n2, h2) = (n1ϕ(h1)n2, h1h2).

Let G be a group and H ≤ Sn for some non-negative integer n. Then we can form the
wreath product as

G oH = Gn oH

where H acts on Gn by permuting the n copies of G.

Example. If we imagine that each of the
sets of 3 labelled vertices in the diagram to
the left is a copy of G, then we can say that
we have n = 2 copies of G. Imagine that the
diagram functions like a mobile such that
it can be rotated, effectively swapping the
vertices around. We can either swap the
“arms”, or the two vertices in the middle of
the diagram, or we can rotate the 3 “hands”

on each arm so long as their adjacencies are unchanged (i.e. 1 is to the left of 3 which is to
the left of 5 which is to the left of 1.) We can even do some combination of the two, choosing
how many times (if any) to rotate each set of hands, and whether or not to swap the arms.

If we read the bottom vertices across from left to right, we start with 135 246. But if we
rotate our mobile, we can end with 513 624, or 462 135, etc. In fact, there are 18 possible
arrangements of the vertices as there are possible arrangements for each set of hands and 2
possible arm arrangements, yielding 3 ∗ 3 ∗ 2 = 18.

Now, if we return to our notation for the wreath product, we have that G is a set of 3 hands,
so |G| = 3 and there are n = 2 copies of G, meanwhile H is the set of arms, so |H| = 2. For
the wreath product G oH, we have that |G oH| = |G|n|H|, and by substituting we have that
32 ∗ 2 = 18. Therefore, the size of the wreath product is equal to the number of possible
arrangements (or permutations) as H acts on n copies of G.

Given Bely̆ı maps β and γ we have the following group homomorphism:

Mon(βγ) → Mon(γ) oMon(γ)

ρβγ(λ) 7→ (ργ∗(fλ), ρβ(λ)) .

Here ρβ(λ) denotes the monodromy representation of λ.
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2 Tools

2.1 Jacob Bond’s Thesis

From Jacob Bond’s thesis, of note were two theorems and the idea of an extending pattern.
These concepts are highlighted below.

Corollary (p.71). The monodromy group Mon(βγ) of the composition of a dynamical
Bely̆ı map β and a Bely̆ı map γ is isomorphic to a subgroup of the wreath product Mon(γ)oEβ
Mon(β). Moreover, this isomorphism is given by

Mon(βγ) → ϕγ(π
z
1) ≤ Mon(γ) oEβ Mon(β)

ρβγ(λ) 7→ (ργ∗(fλ), ρβ(λ)) .

Theorem 4.18 (p.76). Let β be a dynamical Bely̆ı map with constellation (τ0, τ1) and
extending pattern (f0, f1). Let ϕ denote the homomorphism

g0 7→ (f0, τ0)

g1 7→ (f1, τ1).

Define A := ϕ(ker ρβ). Then for any Bely̆ı map γ

Mon(βγ) ∼= ργ∗(A) o Mon(β).

Extending Patterns. The extending pattern is a pair of functions
(f0, f1) for a map β determined by it’s dessin d’enfant. In order to
compute the extending pattern, we must follow the counterclock-
wise cycles of edges around the vertices of the dessin while utilizing
the following 6 rules. Each edge is assigned a value, 1, a, b, a−1, b−1
according to the following rules. The diagram below showcases a
simplified version of these rules for a triangular dessin.

1. If p ⊆ R1/2, then p	 'p 1.

2. If either p(0), p(1) ∈ H+ or p(0), p(1) ∈ H− and either p ⊆ R−1/2 or p ⊆ R3/2, then
p ' p1

3. If p(0) ∈ H+, p(1) ∈ H−, and p ⊆ R−1/2, then p	 'p a.

4. If p(0) ∈ H−, p(1) ∈ H+, and p ⊆ R3/2, then p	 'p b.

5. If p(0) ∈ H−, p(1) ∈ H+, and p ⊆ R−1/2, then p	 'p a−1.

6. If p(0) ∈ H+, p(1) ∈ H−, and p ⊆ R3/2, then p	 'p b−1.
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2.2 Melanie Wood’s Paper

Melanie Wood uses the composition β ◦ γ : P1(C) → P1(C) → P1(C), mapping a sphere to
a sphere to a sphere.

Consider the following example:

Example 3.7 (p.732). γ(t) = −27(t3 − t2)/4 The extending pattern of γ is shown in the
figure below.

[xγ, yγ] = [(ab), (b, c)]. The edges of Γ is denoted 1, 2, ..., d.

xγ(Γ) is composed of all the cycles of the form

((k, a)(xΓk, b)(xΓk, a)(x2
Γk, b)(x

2
Γk, a)...)

and
((k, c)(yΓk, c)(yΓk, c)...)

Consider another example:

Example 3.8 (p.733). ξ(t) = 27t2/(4(t2 − t+ 1)3).

The extending pattern of ξ is shown in the figure below.
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[xξ, yξ] = [(af)(bc)(de), (ab)(cd)(ef)]. The edges of Γ is denoted
1, 2, ..., d and zΓ = (xΓyΓ)−1.

xξ(Γ) is composed of all the cycles of the forms

((k, a)(k, f)(xΓk, a)(xΓk, f)(x2
Γ, a)(x2

Γ, f)...),

((k, c)(k, b)(yΓk, c)(yΓk, b)(y
2
Γ, c)(y

2
Γ, b)...)

and for 1 ≤ k ≤ d:
((k, e)(k, d)(zΓk, e)(zΓk, d)(z2

Γ, e)(z
2
Γ, d)...)

yξ(Γ) is composed of all the cycles of the form ((k, a)(k, b)), ((k, c)(k, d)), and ((k, e)(k, f)),
for 1 ≤ k ≤ d.

In the notation from Jacob Bond’s thesis, for γ = ∆,Ω and β = ξ, and if we relabel the
edges numerically for the sake of clarity (as shown below), then we have

τ0 = (1, 6)(2, 3)(4, 5)

τ1 = (1, 2)(3, 4)(5, 6)

f0 = [1, b, 1, b−1a−1, 1, a]

f1 = [1, 1, 1, 1, 1, 1]

Proposition 3.9. Let ∆ be the
dessin corresponding to the permu-
tation pair

[(1234)(567)(89), (1837)(2310)(56)]

and Ω be the dessin corresponding
to the permutation pair

[(1234)(567)(89), (1389)(210)(456)]

Then ∆ and Ω have the same va-
lency lists, automorphism groups,
monodromy groups, cartographic
groups, and rational Nielsen classes.
However, the Mξ groups of ∆ and

Ω differ in size. Thus ∆ and Ω are in different GQ-orbits.
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2.3 Bely̆ı Lattès Maps by Ayberk Zeytin

Let E be an elliptic curve given by E : y2 = x3 + 1. Consider the toroidal Bely̆ı map

φ : E → P1

given by

φ : P = (x, y) 7→ z =
1− y

2
.

For any positive integer N , the multiplication by N map on E, [N ] yields a dynamical
Bely̆ı map BN : P1 → P1 given by BN(φ(P )) = φ([N ]). Then, BN has degree N2 and the
BN are called Lattès maps.

A few cases are shown in the table below. We will focus on the n = 2 and n = 3 case, but
the n = 4 case is also shown to illustrate another example.

n Bn Mon(Bn) Mon(Bn ◦ φ)

2
(z − 1)(z + 1)3

8(z − 1/2)3
A4 A4

3
(z3 + 3z2 − 6z + 1)3

27z(z − 1)(z2 − z + 1)3
He3 (Heisenberg of order 27) He3

4 z(z5+8z4−32z3+28z2−10z+4)3

(4z5−10z4+28z3−32z2+8z+1)3
(C4 × C4) o C3 (C4 × C4) o C3

The composition β : P = (x, y) 7→ BN(φ(P )) = φ([N ]P ) is a Toroidal Belyi map of degree
3 ·N2. When n=2, the degree of Bn is 3 ·22 = 12. When n=3, the degree of Bn is 3 ·32 = 27.
Likewise, when n=4, the degree of Bn is 3 · 42 = 48. Note that the degree of Mon(Bn ◦ φ) is
equal to the degree of Mon(Bn) in every case.

For the case of n=2, the extending pattern is as follows.

τ0 = (1, 3, 4) f0 = [1, b, a, a−1]
τ1 = (2, 4, 3) f1 = [a, b−1, 1, b]

For the case of n=3, the extending pattern is as follows.

τ0 = (1, 7, 2)(3, 9, 4)(5, 8, 6) f0 = [a−1, a, 1, 1, b, b−1, 1, 1, 1]
τ1 = (1, 2, 8)(3, 4, 7)(5, 6, 9) f1 = [b, 1, a−1, 1, 1, 1, a, b−1, 1]
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3 Our Research

The monodromy group Mon(β) contains information about the symmetries of a Bely̆ı map
β. For any Toroidal Bely̆ı map γ,

• There is a surjective group homomorphism Mon(β ◦ γ) � Mon(β).

• The monodromy group Mon(β◦γ) is contained in the wreath product Mon(γ) oMon(β).

Our project goal was to study how the three groups: Mon(β), Mon(β ◦ γ), and Mon(γ) o
Mon(β) compare as we vary over Dynamical Bely̆ı maps β and now Toroidal Bely̆ı maps
γ. Our motivating question was: when is Mon(β ◦ γ) equal to Mon(γ) o Mon(β)?

3.1 Sagemath Code

Using Sagemath, we developed a function which would input a Bely̆ı pair and compute
helpful information regarding the monodromy group. Below is a description of the code’s
function:

0. Inputs a Bely̆ı pair (f, β) where β is written b in our code.

1. Solve for a list of N points (x, y) such that f = 0 and b = z0 = 1
2
.

2. Solve the first order IVP:[
dx
dt
dy
dt

]
= 2π

√
−1

β(x, y)− e
(∂β/∂x)(∂f/∂y)− (∂β/∂y)(∂f/∂x)

[
+∂f
∂y

−∂f
∂x

]
,

[
x(0)
y(0)

]
= Pa

We use Euler’s method to do this in Sage.

3. Form a list of endpoints by carrying out step 2 for a = 1, 2, . . . , N on the interval
0 ≤ t ≤ 1 and selecting the endpoint of each path. Do this twice to create 2 lists, one
for e = 0 and one for e = 1.

4. Compare the list of endpoints computed to the list of N points, and take the point Pa
from step 1 which is closest to that endpoint. This will help us avoid small rounding
errors.

5. Calculate σ0 and σ1 by permuting the points in the updated list and returning these
permutations as cycles. Find σ∞ by computing σ1

−1σ0
−1. This yields the monodromy

triple.

6. Compute the monodromy group of the Bely̆ı pair by defining G as the symmetric
group of order N and the monodromy group H as the subgroup of G generated by σ0

and σ1.
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7. Determine isomorphism. Define M as the monodromy group for the Bely̆ı pair (f, b)
and C as the monodromy group for the Bely̆ı pair (f, bn). Check if |C| = mnn (the
order of the wreath product.)

Using this code, we were able to rapidly compute many examples and more easily determine
patterns for which the monodromy groups and wreath products were equal. In particular,
our code helped us determine for which values of n was this true, and what conditions did
the group have to meet (i.e. abelian, cyclic, etc.) in order to satisfy our conjecture.

Example: For the Bely̆ı pair (y2− (x3−432), 6x
y+36

) where f = y2− (x3−432) and β = 6x
y+36

,

our code returned the monodromy triple 〈id, (132), (123)〉 and thus the monodromy group
is generated by id and (132). If we take β = zn, we can run our code again for β2 and
β3 such that n = 2 and n = 3, respectively. When we check for isomorphism between the
monodromy group and the wreath product, we find that for n = 2 their sizes are 9 and 81,
meaning that they are not isomorphic and thus that the wreath product is not equal to the
monodromy group. In contrast, for the n = 3 case both have orders of 18, showing that the
monodromy group is equal to the wreath product in this case.

3.2 Extending Pattern Examples

i β(t) Extending Pattern Generators

1 −27
4

(t3 − t2)
τ0 = (12) f0 = [a, 1, b]
τ1 = (23) f1 = [1, 1, 1]

[a−2, b−1, b−1], [1, 1, 1], [b−1, a−2, b−1],
[ab−1a−1, b−1, ba−2b−1],

[a−1, ab−1, ba−1b−1]

2 −2t3 + 3t2
τ0 = (12) f0 = [a, 1, 1]
τ1 = (23) f1 = [1, b, 1]

[a−1, a−1, 1], [1, b−1, b−1], [ab−1a−1, 1, b−1],
[a−1, 1, a−1], [1, a−1, a−1],

[1, ba−1, 1], [ab−1a−1, a−1, 1]

3 t3+3t2

4

τ0 = (23) f0 = [1, a, 1]
τ1 = (12) f1 = [1, 1, b]

[1, a−1, a−1], [1, 1, b−2], [a, ab−2a−1, 1],
[a−1, 1, ba−1b−1], [a−1, aba−1b−1a−1, 1],
[aba−1, b−1a−1, b], [ab−1a−1, b−1a−1, b]

4 27t2(t−1)
(3t−1)3

τ0 = (23) f0 = [b, a, 1]
τ1 = (12) f1 = [b−1a−1, 1, 1]

[b−2, a−1, a−1], [ab, ab, 1], [ba, 1, ab],
[b−1a−1b, b−2, a−1], [a−1, a−1, b−2],

[b−1, a−2, b−1], [b−1, ba−1, a]

5 t2(t−1)

(t− 4
3

)3
τ0 = (12) f0 = [a, 1, b]
τ1 = (23) f1 = [b−1a−1, 1, 1]

[a−1, a−1, b−2], [b−1a−1b, b−2, a−1],
[abab, 1, 1], [1, abab, 1],

[ab−2a−1, b−1a−1b, ba−1b−1],
[b−2a−1, b2, b−1a−1b−1], [b−2a−1, b2, a]

Melanie Wood provides 5 Bely̆ı extending maps labelled βi for i on range 1 to 5. The
extending patterns of those maps and their dessins are summarized in the table above.
These extending pattern values became useful when generalizing our proof in the following
section. Our Sage code yielded a list of generators for each example, and we were able to
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compute the minimal generating set for each β in order to make some observations about
the monodromy of each map.

2 3
1

0 1

∞

2
31

0 1

∞

3

1

2

0 1

∞

3

12

0 1

∞

2 3

1

0 1

∞

β1 β2 β3 β4 β5

3.3 Results

We first consider the case where Mon(γ) is abelian and β(z) = zn. Before computing
Mon(βγ) we require a few basic facts about β.

Proposition 1. The monodromy group, Mon(β) = 〈τ0, τ1〉 where τ0 = (1, 2, . . . , n), τ1 = id,
and Mon(β) = Cn. We also have f0 = (1, . . . , 1, a, 1, . . . , 1) (where a is in entry bn

2
c + 1 of

f0) and f1 = (b, 1, . . . , 1).

Proof. We begin by describing the Dessin d’Enfant for β(z) = zn. We have the sets of
vertices,

B = β−1({0}) = {0}
W = β−1({1}) = {e2πik/n : 0 ≤ k < n}

along with the set of edges Eβ = β−1([0, 1]). Fix the labeling on Eβ where the edge connecting
0 and e2πik/n is labeled k + 1. Then τ0 sends every edge k to the edge k + 1 mod k so that
τ0 = (1, 2, . . . , n). For each white vertex, τ1 sends the edge k back to itself so that τ1 = id.
It follows that

Mon(β) = 〈(1, 2, . . . , n)〉 ∼= Cn.

When calculating f0, the only edge of interest is bn
2
c+ 1 because the loop around it crosses

the real axis in (−∞, 0]. Since the loop around this edge crosses from H+ to H− it contributes
an a to the bn

2
c+ 1 position of f0. The loop for each other edge crosses the real axis on [0, 1]

or does not cross at all. When calculating f1, the only edges of interest are 1 and n
2

+ 1 (if it

exists). The loop around edge 1 crosses the real axis in [1,∞) and travels from H− to H+.
Thus, edge 1 contributes b to the first entry of f1. The loop around edge n

2
+ 1 crosses the

real axis twice in (−∞, 0] and travels from H+ to H− and back to H+. Thus, edge n
2

+ 1
contributes bb−1 = 1 to position n

2
+ 1 of f1. It follows that

f0 = (1, . . . , 1, a, 1, . . . , 1)

f1 = (b, 1, . . . , 1).
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...

n
n− 1

1

2
3

4

n− 2

Dessin d’Enfant for β(z) = zn.

Recall that Theorem 4.18 from Jacob Bond’s thesis allows us to compute Mon(βγ) by in-
stead computing ργ∗(A), where A is defined as ϕ(Kerρβ). We begin by finding the generators
of Kerρβ.

Proposition 2. Ker(ρβ) = 〈b, an, aiba−i〉 for i ∈ {±1, . . . ,±bn
2
c}.

Proof. Recall from topology that π1(P1(C) \ {0, 1,∞}) = F2 so that ρβ : F2 → Mon(β).
Here F2 denotes the free group on two generators 〈a, b〉 where a represents the class of loops
around 0, and b represents the class of loops around 1. Proposition 1 then tells us that

ρβ(a) = τ0 = (1, 2, . . . , n)

ρβ(b) = τ1 = id.

We can then determine ρβ(b) = ρβ(an) = ρβ(aiba−i) = id for i ∈ {±1, . . . ,±bn
2
c}. It follows

that ρβ (〈b, an, aiba−i〉) = {id}. Since 〈b〉 ⊆ 〈b, an, aiba−i〉, we have

b · 〈b, an, aiba−i〉 · b−1 ⊆ 〈b, an, aiba−i〉.

Conjugation by a is slightly more complex. We have

a · an · a−1 = an ∈ 〈b, an, aiba−i〉
a · b · a−1 = aba−1 ∈ 〈b, an, aiba−i〉.

Consider a · aiba−i · a−1 = ai+1ba−(i+1). If i = bn
2
c, then ab

n
2
c+1ba−(bn

2
c+1) is not explicitly a

generator. However,

ab
n
2
c+1ba−(bn

2
c+1) = an ·

(
a−b

n
2
c+1bab

n
2
c−1
)
· a−n ∈ 〈b, an, aiba−i〉.
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Thus, 〈b, an, aiba−i〉 E F2. Notice that

F2/〈b, an, aiba−i〉 = {id, a, . . . , an−1} ∼= Cn.

Since ρβ(〈b, an, aiba−i〉) = {id} and F2/〈b, an, aiba−i〉 ∼= Mon(β) it follows that

Ker(ρβ) = 〈b, an, aiba−i〉.

Now that we have the generators of Kerρβ, we can determine where each is sent by ϕ
using the semi-direct product group law.

Lemma 3.1. Given the homomorphism ϕ such that

ϕ(a) = [f0, τ0]

ϕ(b) = [f1, τ1]

we obtain the following relations:

ϕ(b) = [(b, 1, . . . , 1); id] (1)

ϕ(an) = [(a, . . . , a); id] (2)

ϕ(aiba−i) = [(1, . . . , 1, d, 1, . . . , 1); id]. (3)

Here, d is in the ith position of ϕ(aiba−i) and

d =

{
aba−1 if |i| = bn

2
c

b otherwise

Proof. Note from Proposition 1 that

ϕ(a) = [(1, . . . , 1, a, 1, . . . , 1); (1, 2, . . . , n)]

ϕ(b) = [(b, 1, . . . , 1); id].

This proves relation (1) immediately. Before proving (2) and (3), we derive a general form
for ϕ(a)k where 1 ≤ k ≤ n. We do so by induction, where our base case k = 1 is given
above. Assume for some 1 ≤ ` ≤ n that

ϕ(a)` = [(1, . . . , 1, a, . . . , a, 1, . . . , 1); τ `0 ]

where a appears in positions bn
2
c+ 1 through bn

2
c+ ` modulo n. Then

ϕ(a)`+1 = ϕ(a) · ϕ(a)`

= [(1, . . . , a, . . . , 1); τ0] · [(1, . . . , a, . . . , a, . . . , 1); τ `0 ]

= [(1, . . . , a, . . . , 1) · τ0(1, . . . , a, . . . , a, . . . , 1); τ `+1
0 ].
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Note that τ0(1, . . . , a, . . . , a, . . . , 1) has a in positions bn
2
c+ 2 through bn

2
c+ `+ 1. Since ϕ(a)

has a single a in position bn
2
c+ 1 modulo n, it follows that

ϕ(a)`+1 = [(1, . . . , a, . . . , a, . . . , 1); τ `+1
0 ]

where a is in positions bn
2
c + 1 through bn

2
c + ` + 1. Thus, by induction, for any 1 ≤ i ≤ n

we have
ϕ(a)i = [(1, . . . , a, . . . , a, . . . , 1); τ i0]

where a is in positions bn
2
c+1 through bn

2
c+ i modulo n. Relation (2) follows from the i = n

case. A similar proof shows the following for −n ≤ −i ≤ −1:

ϕ(a)−i = [(1, . . . , a−1, . . . , a−1, . . . , 1); τ−i0 ]

where a−1 appears in positions bn
2
c − i through bn

2
c modulo n. Now, consider for some

1 ≤ i ≤ n

ϕ(ba−i) = [(b, 1, . . . , 1); id] · [(1, . . . , a−1, . . . , a−1, . . . , 1); τ−i0 ]

= [(b, 1, . . . , 1) · (1, . . . , a−1, . . . , a−1, . . . , 1); τ−1
0 ]

= [(c, . . . , a−1, . . . , a−1, . . . , 1); τ−i0 ]

where c denotes ba−1 when i = bn
2
c and b otherwise. For that same i consider the following:

ϕ(aiba−i) = ϕ(a) · ϕ(ba−i)

= [(1, . . . , a, . . . , a, . . . , 1); τ i0] · [(c, . . . , a−1, . . . , a−1, . . . , 1); τ−i0 ]

= [(1, . . . , a, . . . , a, . . . , 1) · τ i0(c, . . . , a−1, . . . , a−1, . . . , 1); id].

Note that τ i0(c, . . . , a−1, . . . , a−1, . . . , 1) has c in position i and a−1 in positions bn
2
c+1 through

bn
2
c+ i. This gives relation (3)

ϕ(aiba−i) = [(1, . . . , d, aa−1, . . . , aa−1, . . . , 1); id]

= [(1, . . . , d, . . . , 1); id].

where d = aba−1 when |i| = bn
2
c and b otherwise.

Using Lemma 1, we can finally determine a general form for ργ∗(A) when Mon(γ) is
abelian and β(z) = zn.

Proposition 3. ργ∗(A) = 〈(bγ, 1, . . . , 1), . . . , (1, . . . , 1, bγ), (aγ, . . . , aγ)〉 where bγ appears in
each of n positions.

Proof. Recall from Lemma 1 that ϕ(aiba−i) = [(1, . . . , 1, d, 1, . . . , 1); id] where d is in the ith

position. As i ranges over {0,±1, . . . ,±bn
2
c} we get n distinct generators of A:

{[(b, 1, . . . , 1); id], [(1, d, 1, . . . , 1); id], . . . , [(1, . . . , 1, d); id]}.
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Combined with the last generator, ϕ(an) it follows that

A = 〈[(b, 1, . . . , 1); id], [(1, d, 1, . . . , 1); id], . . . , [(1, . . . , 1, d); id], [(a, . . . , a); id]〉.

Note that under the assumption Mon(γ) is abelian, aγbγa
−1
γ = bγ so that ργ∗(d) = bγ. Thus,

ργ∗(A) = 〈(bγ, 1, . . . , 1), . . . , (1, . . . , 1, bγ), (aγ, . . . , aγ)〉.

In our final step, we use Proposition 3 to determine the exact conditions under which
Mon(βγ) ∼= Mon(γ) oMon(β).

Theorem 3.2. Let Mon(γ) = 〈aγ, bγ〉 be abelian and β(z) = zn for some n > 1. Then
Mon(βγ) ∼= Mon(γ) oMon(β) if and only if Mon(γ) = 〈bγ〉.

Proof. We begin with the forward direction. Assume Mon(βγ) ∼= Mon(γ)oMon(β). Theorem
4.18 from Jacob Bond’s thesis tells us this is equivalent to saying ργ∗(A) ∼= (Mon(γ))n. Note
that (aγ, 1, . . . , 1) ∈ ργ∗(A). So we can fix k1, k2, ` ∈ Z such that

aγ = bk1γ · a`γ
1 = bk2γ · a`γ.

We can solve to get a`γ = b−k2γ . Plugging this in gives aγ = bk1−k2γ . Thus, aγ ∈ 〈bγ〉. Since
Mon(γ) = 〈aγ, bγ〉 and 〈aγ〉 ⊆ 〈bγ〉, it follows that Mon(γ) = 〈bγ〉.
Now, the reverse direction. Assume Mon(γ) = 〈bγ〉. Note that

〈(bγ, 1, . . . , 1), . . . , (1, . . . , 1, bγ)〉 ≤ ργ∗(A).

We can then recognize the following isomorphism:

〈(bγ, 1, . . . , 1), . . . , (1, . . . , 1, bγ)〉 ∼= 〈bγ〉n ∼= (Mon(γ))n .

It follows that (Mon(γ)) ∼= ργ∗(A). Using Theorem 4.18 from Jacob Bond’s thesis we can
conclude that Mon(βγ) ∼= Mon(γ) oMon(β).

We can prove analogous results for other dynamical Bely̆ı maps.

Proposition 4. Suppose γ toroidal Bely̆ı map with Mon(γ) abelian. Let βi denote the
dynamical Bely̆ı map of the same name given in Section 3.2. Then we have the following
sufficient conditions for when Mon(βiγ) ∼= Mon(γ) oMon(βi):

β1: Mon(γ) = 〈a2
γ〉 or aγ = 1 (so that Mon(γ) = 〈bγ〉)

β2: Mon(γ) = 〈a2
γ〉 or Mon(γ) = 〈b2

γ〉

β3: Mon(γ) = 〈a2
γ〉 or Mon(γ) = 〈b2

γ〉

β4: Mon(γ) = 〈c2
γ〉

β5: Mon(γ) = 〈c2
γ〉
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3.4 Further Research

Our work is in no way comprehensive. Areas of future study which may yield interesting
results would include an examination of monodromy groups which are non-abelian, since our
proof exclusively explored the abelian case. Another variable which could be considered is in
the makeup of our Bely̆ı map composition. Our map was toroidal, but there are other cases
which could include surfaces with genus > 1, and even when limiting our case to a genus
≤ 1, there were discrepancies between our Bely̆ı composition and Wood’s or Zeytin’s.
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